
Contentos 2.0 Sharding
Version 1.0

Contentos R&D Team, August 2020

1. Background

Contentos is a public blockchain system focusing on digital contents. In addition to regular token
transfers, it also supports recording a wide range of content creation and social behaviors. The
built-in economic system automatically settles rewards to block producers, dAPP creators, content
creators and curators in accordance with the reward plan formulated by the Contentos
Foundation. Turing-complete smart contract system and rich contract APIs provide a very broad
customization space for marketing. By introducing the novel saBFT consensus algorithm on the
basis of DPoS, Contentos has an industry-leading service response speed. The average block
finalization delay is 1 to 2 seconds, which provides solid support for smooth user experience of
dAPPs.

Contentos Mainnet 1.0 has been running for 10 months since its launch on September 25, 2019.
With the contributions of COS.TV, PhotoGrid and other dAPPs, it has served hundreds of
thousands of users, recorded more than two million pieces of digital contents, and over 200,000
users have benefited from the system rewards. Contentos Mainnet 1.0 has a stable processing
capacity of about 3,000 TPS. The current system load rate is less than 1% but in fast growth. The
Contentos team decided to introduce the sharding mechanism in Contentos 2.0 to further expand
the system scalability and prepare for greater dAPP traffics in the future.

The TPS problem, or the scalability problem, has always been the most infamous technical
bottleneck in the public blockchain world. For example, the average TPS of the most popular
blockchain projects Bitcoin and Ethereum is less than 20. Such a low throughput severely limits
the applicable scenarios of these blockchain systems.

There are two main reasons for the scalability problem.

PoW is excellent in terms of security and decentralization, but it relies on heavy calculations.
Each node in the blockchain network must process all transactions, because the whole
transaction history is required by the verification of a new transaction.

Therefore, the throughput of the entire system comforts to the law of minimum, i.e. it is
determined by the performance of a single node, and the addition of new nodes cannot improve
the overall system performance. For the first reason, consensus algorithms that do not rely on
intensive calculations, such as PoS, DPoS, have been proposed by the industry and have gradually
become mainstream because of their significant advantages in efficiency. For the second reason,
there are generally two kinds of solutions. One is the super node solution, which forces people to
run their nodes on high-performance and high-bandwidth machines. Expensive nodes have
higher processing capabilities, but also raise the threshold for participation and reduce the level
of decentralization. Solana is an outstanding example of this kind. By thorough algorithm

optimization and GPU usage, it managed to increase the TPS to hundreds of thousands.
Meanwhile, other projects favored more moderate trade-offs. Super node solutions are just
mitigations because the system nature never changes. Another solution is sharding, which
distributes the system load to different nodes and each node is only responsible for processing a
part of the transactions. This is the typical pattern of a distributed system, in which scalability is
achieved. However, sharding is not easy when it comes to blockchains. Many projects, such as
Ethereum 2.0, Zilliqa, Ontology, PolkaDot, Cosmos, Harmony and NEAR, have proposed their own
sharding solutions, which are great experimentations in this direction.

A node can process a transaction if and only if it stores state data on which the transaction
depends. In practical applications, the storage of state data may become a bottleneck earlier than
the computing power, because the state data will always increase even if the system load is
constantly low. Zilliqa only distributes transaction processing tasks while each node still stores
complete state data. Other solutions distribute both processing and state, so that each node
stores only part of the state data. State sharding can significantly reduce the storage requirement
of a single node, but introduces several cutting-edge challenges in terms of state verifiability, data
availability, and data synchronization efficiency.

Contentos Mainnet 1.0 is a DPoS-based super node solution. Although the node criteria is not too
restricted, it does exclude most PCs. The goal of Contentos 2.0 is to implement sharding while
ensuring both the validity of Mainnet 1.0's data and the continuation of the Contentos reward
plan.

2. Overview

Contentos 2.0 uses a dAPP-based sharding strategy.

More than 99% of Contentos Mainnet 1.0 transactions come from dAPPs, such as COS.TV website,
COS.TV app and PhotoGrid app. In practice Contentos Mainnet is not a direct-to-user system, but
an infrastructure that provides blockchain service for dAPPs. This is the main business feature of
Contentos today and in the future. dAPP is an effective grouping of users and transactions. In
most cases, a transaction from a dAPP only affects users of the same dAPP. In a dAPP-based
sharding system, each dAPP will be assigned to one and only one shard. Each shard is responsible
for processing transactions of one or several dAPPs, and only stores state data related to these
dAPPs.

The benefits of dAPP-based sharding are mainly reflected in,

Well clustered state data.
Better performance due to the small proportion of cross-shard transactions.

The disadvantage is that a dAPP can only be supported by one shard. The system may still find it
difficult to afford super dAPPs which require thousands of TPS.

We believe that it would be really helpful for the prosperity and diversity of Contentos ecosystem
if we managed to support hundreds of midsized dAPPs using a horizontal sharding solution. For
the limitation of support for super dAPPs, we hope to improve that by vertical sharding in the
future.

3. System Model

3. System Model
Contentos 2.0 sharding uses a Beacon+Shard structure, which is the same as Ethereum 2.0.

As shown in Figure 1, the Beacon chain and shard chains form a simple two-layer tree structure
with the Beacon as root and shards as leaves. All shards are siblings. There's one and only one
Beacon chain, while shards are optional and the number of shards is only limited by the capacity
of the Beacon.

In Contentos 2.0, all nodes must join the Beacon chain. A Beacon node has the choice to join one
or more shards. In other words, if is a shard node, it is also a Beacon node. must maintain
two sets of state data at the same time, that is, the state data of the Beacon chain and the state
data of the shard it is in. Therefore, Beacon's state data is shared by all shards, as shown in Figure
2.

4. Cross-shard Messaging

4. Cross-shard Messaging
Cross-shard messaging is the message passing among Beacon and shards.

A typical application of cross-shard messaging is token transfer among shards. Suppose that ,
 are users from , respectively and wants to send some tokens to . Since

 does not maintain the state of , it can only complete the deduction of 's balance and
then send a message to . When receives , it increases 's balance.
In this example, is the key part that guarantees the eventual consistency.

We have mentioned in Section 3 that all Contentos 2.0 nodes must join the Beacon chain. No
matter which shard a node belongs to, they can communicate freely because they are all
participants of Beacon's P2P network. But P2P messaging may not always be successful due to
network jitters. In extreme cases like a short-term network partition, shards could be completely
disconnected from each other so that any cross-shard messaging would fail. Howerver, cross-
shard messages must be successfully received and processed, which is the fundamental
requirement to keep things working. This requires the system to continuously retry until the
message is successfully delivered. In a gossip network, a retry mechanism is hard to build because
of the lack of network error detection and feedback channels. Most projects in the industry do not
implement a retry mechanism, but turn to a client-driven solution, which asks users to initiate
retry requests when they find critical inconsistency issues in cross-shard transfers. The client-
driven solution provides an opportunity to clean up the mess, but it doesn't help fix the
consistency flaw. We prefer a non-user-interactive and more secure system.

Our solution records all cross-shard messages into blocks of the Beacon chain. Take the cross-
shard transfer between and as an example,

Step 1, initiates and broadcasts the transaction in .
Step 2, A block producer of produces block , which contains . Since is a
cross-shard transfer, the block producer will construct a message , telling
that the balance of should be increased. is also included in .
Step 3, When reaches finality, all cross-shard messages it contains, including , are
broadcast to the Beacon chain.
Step 4, All candidate block producers of the Beacon chain who receives will store it in
a buffer queue, which is the data source for future blocks. Eventually, is packed into

 by one of the producers.
Step 5, When reaches finality, each shard node searches the cross-shard messages
contained in for its own interests. Candidate block producers of find
and store it to their buffer queues.
Step 6, A block producer of packs into , and broadcasts in .
Each node of who receives updates 's balance in response to .
Step 7, reaches finality and the cross-shard transfer is done.

Here is a simple diagram,

Shard A Beacon Shard B

M packed in block

broadcast M

M packed in block

any msg for you?

got M from beacon

Shard A Beacon Shard B

In the above procedure, the cross-shard message will be stored in the buffer queue of
each block producer. A producer always makes its best to pack buffered messages into blocks so
that gets maximum chance of delivery. In fact will always survive as long as the
communicating shards are not completely disconnected at the moment is sent. The whole
procedure can be broken when a network partition happens to prevent from being
received by any Beacon producers in Step 4. In such situation, nodes of will discover the
problem easily because is supposed to be packed into a Beacon block but it's not. Any
node of can try fixing the problem by automatically broadcasting to the Beacon
chain again after a predefined timeout. The re-broadcast is repeated until the network recovers
and is finally processed.

The cross-shard messaging of Contentos 2.0 guarantees the eventual consistency, which we
believe should be respected by any sharding system.

4.1 saBFT Compatibility

Sharding is essentially a multi-chain collaboration system. Each chain participating in the system
must be able to reach the finality state, otherwise the consistency will be at risk. Taking cross-
shard transfer as an example, the entire transfer process has two steps, pays and earns.
The two steps are performed asynchronously on two chains and . At some point
after the transfer is done, applies a fork switch and rolls back the transaction so that 's
tokens come back. In order to ensure data consistency, must also roll back 's balance.
If has spent these tokens or transferred them to other shards, these subsequent transactions
must be rolled back too. The chain effect makes the problem extremely complicated and
unsolvable with high probability. That's why finality is required.

type reason data

TRANSFER ID of cross-shard transaction
receiver account and amount
of tokens

STAKE ID of cross-shard transaction
receiver account and amount
of tokens

REWARD (triggered by Beacon economic system) amount of the reward

VALIDATOR
information of the block at which validator
set changes

change of validator set

saBFT is a novel consensus protocol used in Contentos Mainnet 1.0. It provides block finality as
other BFT family members do, but in a different way. Forks are allowed and actually quite
common in saBFT. It doesn't matter at all for a mono-chain system like Contentos Mainnet 1.0, but
it is somewhat dangerous for sharding. Fortunately we only need the irreversiblity of the
exchange data across shards, which can be guaranteed if all cross-shard messages are created
and delivered at moments of block commitments. Therefore, saBFT is safe to be deployed in both
Contentos 2.0 Beacon chain and shards. We can still benefit from its low finalization lantency
without introducing any risk to cross-shard transactions.

4.2 Limitation

A cross-shard transaction always contains several operations that will be done in different shards.
An asynchronous relay framework can't support cross-shard transactions in which a successor
operation could fail and thus require cancelling its predecessor. It's simply because the
predecessor operation has been successfully executed and finalized. Cross-shard token transfers
are easy because the addition of receiver's balance is unconditionally achievable.

Contentos 2.0 will only support cross-shard token transfers and stakings. Cross-shard contract
calls are not supported.

4.3 Cross-Shard Message

Cross-shard messages are messages passed among the Beacon and shards. The general form is
defined as,

where and are the sender and receiver shards respectively. The Beacon can also be
regarded as a special shard. is the message type and indicates what kind of operation
should take. is why sends the message. is customized user data that should be
parsed according to . Some cross-shard messages defined by Contentos 2.0 are shown in the
following table.

5. Account System

5. Account System
A user must create an account on the Beacon chain before he/she can join a shard. The Beacon
account system works in the same way as Contentos Mainnet 1.0. Each account has its own name,
cryptographic key, COS balance, staking VEST, etc. Once the user has a Beacon account, he/she
automatically has accounts on all shards. The name and cryptographic key of the shard accounts
are the same as the Beacon account, but the shard asset balances are initialized as zero. Even if a
new shard is created later, the user will automatically have an account on the new shard.

Contentos 2.0 uses a lazy mapping way to deal with the shard accounts. By default, a shard
account is just a mapping of the Beacon account, which means that the shard account is
generated in memory everytime it's needed. Not until the user changes his/her shard assets is a
real shard account record created in the shard state database.

Users can transfer assets from the Beacon chain to the shard and vice versa, which is very similar
to the cross-shard transfer process described in Section 4.

6. Beacon Chain

The Beacon chain is the main chain of Contentos 2.0. It provides shards management and cross-
shard message relaying. Establishing the Beacon chain is one of the main goals of Contentos 2.0.

The infrastructure layer of the Beacon chain is almost the same as the current Contentos Mainnet
1.0.

DPoS + saBFT consensus algorithm.
Dual identity account model based on user name and cryptographic key.
Token transfer and staking.
The resource limitation model of CPU and bandwidth.
Block producer election procedure.
Smart contract virtual machine.
The release-by-block mechanism for rewards.

The differences are mainly reflected in,

No social features such as content publishing, comments, likes, and following.
Cross-shard messages involvement in blocks.
Shard management features to create, suspend, join or exit a shard.
Different reward distribution among the Beacon and shards.

6.1 Shard Management

A shard can be defined as,
 ,

where is the display name and the unique identifier of the shard. is the status of the
shard, which can be one of , and . indicates that the shard
has not started, indicates that the shard is running, and indicates that the
shard has been suspended. is the validator set of the shard with each

, where is the validator's account name and is the

public key. records the amount of tokens staked by
before the shard starts. contains a bunch of statistical numbers of the shard. is the
minimum requirement of a running shard, including the minimum number of validators, the
minimum staking of a single validator, the minimum total staking, etc. is the proportion
of system rewards the shard deserves.

Contentos foundation holds a privileged account for shard management , which has the authority
to create, update, start or suspend shards. After a shard is successfully created, all accounts on
the Beacon chain can join or exit the shard's validator set.

Shard Creation

The privileged account initiates the shard creation transaction
, specifying the name, running conditions, and reward ratio

of the new shard. The system will create a new shard record in response to the transaction,

Shard Updates

The privileged account initiates the shard updating transaction
, specifying the updated running conditions and reward

ratio of the shard. If the shard is already in the state but does not meet the updated
running conditions, it will automatically switch to the state.

Shard Startup

The privileged account initiates the shard startup transaction , specifying the
name of the shard to start. If the shard meets the running conditions and is not in the
state, it will switch to the state and start running. In the genesis of the shard, the system
will register the validator set for the shard, and send validators their VESTs in accordance with

.

Shard Suspension

The privileged account initiates the shard suspension transaction , specifying
the name of the shard to suspend. If the shard is in the state, it will switch to the

 state and stop the service.

Note that shards could also be suspended automatically in case of insufficient number of
validators or insufficient amount of staking, so that the running criteria is no longer met.

Shard suspensions are considered very critical events. Aftercare works will be done by Contentos
core team.

Validator Registration

Any account can initiate a validator registration transaction to join the
shard, specifying the shard name and the amount of COS to stake. If the shard is in the
state and meets the shard's , the initiator account becomes a validator.

 and of the shard will be updated to record the new validator.

For shards that are already in state, a user should register himself as a validator in the
shard chain insead of the Beacon.

Validator Unregistration

A shard validator can initiate an unregistration transaction , specifying the
name of the shard to exit. If the shard is in the state, the system will remove the
validator account from and return his previously staked COS according to
.

For shards that are already in state, a validator should unregister himself in the shard
chain insead of the Beacon.

The VALIDATOR Message

All nodes of the Beacon chain must know the validator set of each shard, so that they can verify
the digital signatures along with messages sent from the shards. Therefore, each shard must
report its validator set changes to the Beacon via VALIDATOR messages. After receiving the
message, the Beacon updates of the sender shard. Although shards also need the
Beacon's validator set, there's no need for the Beacon to send messages to them, because shard
nodes can fetch that directly from the state database.

6.2 Reward Distribution

Like the Contentos Mainnet 1.0, the Beacon chain also has a built-in economic system, which
conforms to the Contentos' reward plan of releasing 3.5 billion COS tokens over a 12-year term.

After each new block is produced, the economic system will mint a certain numbr of rewards and
deposit them into the prize pool. In addition to awarding itself, the Beacon chain distributes
rewards to all shards in the following way,

Step 1, Each time a Beacon node completes the block commitment, it calculates the amount
of rewards that each shard deserves since the last commitment and packs the result into a
cross-shard message of REWARD type.
Step 2, Beacon nodes store in their buffer queue.
Step 3, is packed into a Beacon block .
Step 4, When is applied on the Beacon chain, the total reward of is deducted from the
Beacon's prize pool.
Step 5, After reaches finality, nodes of shard store in their buffer queue.
Step 6, is packed into a shard block .
Step 7, When is applied on shard , prize pool of receives the reward recorded in .

7. Shards

Shards are dAPP carriers that actually deal with digital contents and social behaviors. In the
framework of Contentos 2.0, current Mainnet 1.0 will be reconstructed into one or more shards
according to dAPPs running on it.

Shard chains inherit the DPoS + saBFT consensus algorithm and all features of the Mainnet 1.0. In
order to cooperate with the Beacon, shards must also,

Implement a lazy mapping account system.
Handle all kinds of messages from the Beacon.
Send various messages to the Beacon at the right time.
Refactor its reward system so that all kinds of rewards must come from a single prize pool.
Real time settlements, such as block producer rewards of Mainnet 1.0, need to be re-
designed.

In fact, a shard will work as long as it implements the collaboration interface with the Beacon.
Shards can be very different from each other in terms of consensus algorithm, business features
and reward distribution scheme.

8. Conclusion

In this paper, we outlined the sharding framework of Contentos 2.0, which is a Beacon + Shard
tree structured system model with a dAPP-based sharding strategy. Without covering all the
details, it focused on a few most important components,

A cross-shard messaging scheme that ensures eventual consistency.
Feasibility analysis of saBFT protocol in a sharding system.
A user friendly design of the account system.
Shard management on the Beacon chain.
A reward distribution scheme in compliance with Contentos Reward Plan.

We'll keep studying and make changes on this paper when necessary.

	Contentos 2.0 Sharding
	1. Background
	2. Overview
	3. System Model
	4. Cross-shard Messaging
	4.1 saBFT Compatibility
	4.2 Limitation
	4.3 Cross-Shard Message

	5. Account System
	6. Beacon Chain
	6.1 Shard Management
	6.2 Reward Distribution

	7. Shards
	8. Conclusion

